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PHYSICAL PROPERTIES OF MODEL COLLOIDAL 
LIQUIDS USING BROWNIAN DYNAMICS 

SIMULATION 

D. M .  HEYES and P. J. MITCHELL 

Drpartmcnt of Chcmi.jtrJt, Uniwrsi t j ’  of Surrc!~,  Guildford, G U 2  S X H  

( Rrc.riw.tl I 6  Fehrurrry 1 YY5 ) 

Some aspects of the equilibritiin and nix-Newtonian behaviotir of :i free draining (Rouse level) Brownian 
Dynamics, BD, model colloidal liquids have been computed. Simulations have been carried out of 
spherical particles using the I’ ” inverse power repulsive and hard-sphere interaction. The self-diffusion 
coefficients, liiiear dynamic viscosities, non-Newtonian viscosity behaviour and associated restructuring 
of the assembly have been computed. 

Despite the very simple nature of the model, many of the computed properties follow closely the 
experiincntal data. giving at worst qualitative agreement. The model a l s o  obeys the Cox-Merz rule on 
rescaling either the frequency or shear rate. 

Where the model docs show significant differences froin the experimental data, we can attribute this to 
the absence of many-body hydrodynamics in the model. For example. the longtime self-diffusion coeffi- 
cient decreases with increasing volume fraction. but to a smaller extent than for the experimental systems. 
The magnitude o f  the viscosity and also the extcnt of liquid restructuring at high shear rates are other 
aspects of the model which probably sufler from the absence of many-body hydrodynamics. 

K E Y  WORDS: Rheology, colloidal liquids. shear thinning, dynamic moduli. 

1 INTRODUCTION 

In a series of publications we have applied Brownian Dynamics computer simula- 
tion, BD, to investigate various aspects of the rheology, including the viscoelastic 
behaviour, of model colloidal liquids’ ‘I’ using a free draining hydrodynamic model 
proposed by Ermak in 1975”, which omits ‘many-body hydrodynamics’. There are 
several alternative approaches currently being investigated by different groups to 
include these effects. Historically the first from Bossis and Brady”, is an extension 
of Ermak and McCammon’s diffusion tensor methodI3, but extended to higher 
multipoles, including the so-called stresslet (the fluid stress integrated over the par- 
ticle’s surface) from which the shear stress in the sample can be formally defined (this 
is not devcloped in Ermak and McCammon’s treatment). This approach treats the 
many-body hydrodynamics from the starting point of the ‘far-field’ Oseen tensor 
hydrodynamic solution for point particles, and then correcting for finite particle size. 
A number of other groups have proposed similar schemes, e.g., Ladd14 and Cichocki 
cr ~ 1 . ’ ~ .  These methods are extremely time consuming to implement on a routine 
basis by virtue of matrix inversions required each step (an 0 ( N 3 )  operation), so only 
relatively small systems can be considered at present. In addition, for practical 
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114 D. M .  HEYES AND P.J .  MITCHELL 

reasons, only a finite number of the ‘multipole’ terms can be considered, and the 
expansion seriously breaks down when the particles approach closely (as they will in 
the course of their motion), so near-field squeeze film lubrication forces have to  be 
‘added’ into the model (these are based on an exact two-body solution of the fluid 
flow equations and can be incorporated on a pair-wise additive basis, to a good 
approximation, similar to the short-range colloid forces). An alternative, method for 
incorporating the far-field hydrodynamics has been proposed by Yuan and Ball’ ‘’ in 
which the ‘creeping flow’ fluid flow/pressure field equations for an incompressible 
tluid are solved numerically on an unconstrained (‘Lagrangian’) grid between the 
colloidal particles, subject to the boundary conditions being satisfied on the par- 
ticle’s surface. There are other approaches for treating the solvent, based on a lattice 
gas formalism, where the ‘solvent particles’ represent domains of solvent, either fixed 
on a grid (‘on-lattice gas’’ 7 ,  or  free to move continuously through space (‘off-lattice 
gas” *). However, these lattice gas methods are radically different froin the methods 
based around Ermak’s algorithm, so we d o  not consider them further here. 

Despite the obvious importance of including many-body hydrodynamics in the 
simulations, the Ermak BD technique reproduces many of the features of these real 
systems, such as hindered diffusion at high-volume fraction, non-Newtonian shear 
thinning in steady-state shear and strain amplitude shear ‘softening’ of the dynamic 
moduli in oscillatory shear. All of these effects take place at  roughly the same values 
of strain rate and amplitude as with the experimental systems. Even, though there 
are no solvent-mediated many-body forces in the model, it works surprisingly well, 
indicating the importance of excluded volume effects in dense suspension rheology. 
Although the hydrodynamics-free (Ermak) Brownian dynamics, BD, algorithm will 
continue to have use as a convenient (analytically tractable) ‘reference’ model of a 
colloidal liquid, an increasing number of simulations will be carried out including 
some level of many-body hydrodynamics. Therefore, at this stage i t  is appropriate to 
take stock of the body of Ermak-based BD simulations and establish its strengths 
and weaknesses vis d vis  the experimental systems. In this context, another test of the 
model, is in the relationship between the absolute value of the complex linear 
viscosity It]* (to)[, (which can be obtained from the Fourier transform of the stress 
relaxation function in the linear response limit) and the shear-thinning viscosity /I(?). 
Experimentally it has been found that these two functions are quite similar (especial- 
ly for polymeric systems) and can be superimposed, which is called the Cox-Merz 
rule. Here we discuss the application of the simulation method to the Cox-Merz rule 
in some detail, as we have not considered it before. We compare the shear rate 
dependent viscosity obtained by finite shear rate simulations with the frequency 
dependent viscosity obtained from the time correlation functions (see below) to 
discover if the Cox-Merz rule applies to these inodel systems, and how the compari- 
son varies with solids volume fraction. 

The non-Newtonian (shear thinning) behaviour of colloidal liquids can be com- 
puted by applying a finite shear rate, y, to the model sample and then using the 
mechanical definition: 17 = (cr)/?, where (0) is the time-averaged shear stress. The 
problem with this technique is that a t  low shear rates the statistics deteoriate dra- 
matically, so that it is dificult to extrapolate to zero shear rate to obtain an accurate 
value for the Newtonian viscosity. It is useful to be able to calculate the Newtonian 
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MODEL COLLOIIIAL LIQlJlDS I15  

viscosity for a particular model system because it is central to any analytic 
interpretation o f  the non-Newtonian behaviour. In recent years we have made use of 
the Green-Kubo time correlation formula to calculate this viscosity in our Brownian 
Dynamics, RD, simulations. I t  has the advantage that i t  unambiguously produces 
the Newtonian viscosity, by bcing implicitly a linear response (and therefore infini- 
tesimally small) shear rate method. I n  addition, if  only the Newtonian viscosity is 
required, a single simulation is suficient, whereas the non-equilibrium method, in 
which a finite shear rate is applied, requires at  least several independent simulations 
at  different shear rates t o  provide enough data points t o  cxtrapolate to zero shear 
rate (with the attendant problem of deciding o n  a suitable analytic form for extrapo- 
lation). In  this respect, there are many similarities with the arguments made for 
equilibrium 1's. non-equilibrium molecular dynamics in the 1980s'". 

An additional feature of this work is that we formally prove that the Green-Kubo 
time correlation fiinction method can be applied t o  particles evolving using 
Brownian Dynamics equations of motion, although the derivation of this is implicit 
in some of the work of, e.g., Hess and Klein,'". We also investigate the effect of 
interaction potential and volume fraction on the short and long-time self-diffusion 
coefficients and compare with experiment. 

2 GREEN-KUBO T H E O R Y  FOR COLLOIDS 

Consider N colloidal particles and 1 1  solvent molecules (n >> N ) .  Under the assump- 
tion that the mass of the colloidal particle i i t  far exceeds that of the solvent mol- 
ecules and that the relaxation times of the solvent fluctuations are much shorter 
than those characterising the evolution of tlic structure of the macroparticle assem- 
bly, then the N-particle Fokker-Planck equation for the distribution function of the 
colloidal assembly,,J'(T, t )  can be derived from the Liouville equation" ~ 2 3 . 4 2  

where r =( pl  ... p , , ~ '  .;I-,,), arc the momenta and positions of the colloidal 
particles. T h e  opeFator, R is given by, 

The Fokker-Planck operator, h(r) involves the direct forces on the colloidal par- 
ticles from the other colloidal particles, f ,  and the second term in Eq. (2) is the 
solvent mediated interaction between the colloidal particles where cllJ is the friction 
tensor matrix. The frictional force on particle i from the velocities of all the other 
colloidal particles is given by. 
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I16 D. M. HEYES AND P. J. MITCHELL 

The stationary solution of this is the canonical distribution function, fo(r, t),*' 

where U is the total interaction energy between the colloidal particles and the 
partition function 2 normalises the distribution function so that the integral over all 
phase space is equal to unity. The time evolution of the phase space point is given by, 

where the Fokker-Planck operator. On the time-scale of the structural evolution of 
the colloidal particles the momenta of the colloidal particles can be projected out so 
that the 3N-dimensional vector, X = (rl . . . r N )  takes the place of r, and the Fokker- 
Planck evolution operator is replaced by the Smoluchowski operator D, 

where B =  ~ / K , T  and D i j  is the mobility tensor. The distribution function f ( r ,  t )  is 
replaced by the N-particle configurational distribution function P( - X )  with 

Po (X) = exp ( - B U(X)) /Z(P) (7) 

Given any phase space variable, A ( X ) ,  - we can write 

~ ( t )  = dXA(X)exp(Dt)P,(X), s 
If we apply an infinitesimal step in strain, y = $( t  - to) at r = t o  then the difference 
in the value of the variable, A ( t ) ,  after the perturbation minus that in the absence of 
the perturbation, A,(& is given by, 

where the perturbation operator, D l  = $ ( r  - r , )d /dg  and 5 is the strain tensor. 
Adopting A = 9, the stress tensor, we have, 

f i g ( t )  = d X o ( X )  ( g ( t  - t o )  v g ) g P , ( X ) ,  s - -  
where the O( 1) term disappears for the off-diagonal elements of 9 on the grounds of 
symmetry. Let us choose the element, ox,,, 
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MODEL COLLOIDAL LIQUIDS 117 

This is the linear stress relaxation function written as a time correlation function. 
The viscosity is given by the time integral of this function, 

=(Iimt+ cc)(Sa,,(t)/$ = VP d t ' <  a,,(t')a,,(0) >, s: 
which is the Green-Kubo formula for the shear viscosity. Therefore, we have shown 
that, even though certain degrees of freedom have been projected out of the equa- 
tions of motion, the Green-Kubo formulae can be used to determine the component 
of the transport coefficient associated with those degrees of freedom remaining in the 
equations of motion. We make use of the Green-Kubo formula for the shear viscos- 
i t y  in the next section. 

3 SIMULATION DETAILS 

The Ermak BD simulation method is used here to model near-hard sphere spherical 
colloidal particle liquids. We consider a cubic simulation cell containing particles 
interacting with an inverse power potential, 

V(r)  = E((T/Y)", (13) 

where (T is an  effective particle diameter and Y is the separation between the centres 
of the two model particles. We adopt the values, E = K,{T and n varying between 6 
and 72, with most calculations using 11 = 36. The number of particles in the BD cells, 
N ,  was 256 for most of the simulations (although some were carried out using 
N = 108 and N = 4000), which has, from previous experience, been shown to give 
non-equilibrium behaviour of unassociating systems representative of the ther- 
modynamic limit. The volume fraction used, 4 = np/6 = 0.3,0.4,0.45 and 0.472, 
which is just below the maximum fluid density of a hard sphere fluid (0.49425). The 
computations were carried out using a neighbourhood table list t o  speed up the 
search for interacting particles. In  the case of the N =4000 simulations, link cells 
were used to construct the neighbourhood list. 

The colloidal dynamics were modelled at a basic level using the Langevin equa- 
tions, with an as.sur7ird extension to include interacting particles,' l ,  and the option of 
an applied shear flow (Non-equilibrium Brownian Dynamics), 

where p is the momentum of the Brownian particle, R is the Brownian force on the 
colloidd particle, which is rcpresented by a normally distributed random number. 
is the systematic or direct force between the colloidal particles (including any 
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I18 D. M. HEYES AND P. J .  MITCHELL 

external force). In the limit that the Browinian particle mass, M ,  is much larger than 
that of the solvent molecule, m, i.e., M / m  >> 1, the position update scheme proposed 
by Ermak in 1975 can be derived', 

where Ac is the random displacement sampled from a gaussian distribution of zero 
mean and variance < Ar2 > = 6D,h, where D,, = k,T/3naqS = D , / t  is the self-diffu- 
sion coefficient for the colloidal particle at infinite dilution in a host solvent of 
viscosity qS.  As discussed in the introduction, the main limitation of this model is 
that it omits many-body hydrodynamics. The algorithm in Equation (16) is a modi- 
fication of that proposed by Ermak", to include an imposed laminar shear flow 
with shear rate 7 as a purely additive term. 

A convenient characteristic time for structural evolution in the BD system in T,, 

where a=0/2-  is the radius of the particle. The random displacement in  the 
x-direction is related to Do, through 

which was used to determine the magnitude of the time step, h. We first selected a 
desired root mean square displacement for each Cartesian component, 6,. This 
parameter is chosen to be small enough to prevent catastrophic overlap of particles 
and therefore unrealistically large interaction forces, and yet large enough so that a 
sufficient region of phase space can be explored in a reasonable simulation time 
to obtain good statistical averages. Equating ( S ; ' )  (from ( 1  8)) to S i  yields a formula 
for h, 

so that the time step is K 6;. We have found that a value of 6, = 0.007 - 0.0090 was 
a convenient compromise value. 

4 COMPUTED PROPERTIES 

For the inverse power potentials considered here, all the equilibrium thermo- 
dynamic parameters and the linear moduli are proportional to the average interac- 
tion energy per particle, u, where 
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MODEL COLLOIDAL LIQUIDS 119 

For example, the osmotic pressure is given by, 

and the infinite frequency linear shear rigidity modulus, which is the storage 
modulus in the zero strain amplitude ( y o )  and infinite frequency limit, G ,  = G‘ 
(a)+ K, yo +O), is given by 

making use of the formula of Zwanzig and Mountain27, omitting the kinetic term 
which is insignificant. 

At finite concentration the diffusion process is slowed down by the interaction of 
the tagged particle with the other particles. The time-scale of velocity fluctuation of 
a single large mass, I M ,  called the Brownian relaxation time is zB = H I / ( .  For  times 
t >> z8 but 1<< zI,  the time i t  takes a particle to move a distance of order its diameter, 
the self-diffusion coefficient is D,, the so-called short time self-diffusion coefficient. 
The hydrodynamic interactions occur on the time-scale as z B  so these contribute to 
D,. For  t > > z ,  a particle experiences a substantial change in the interaction force 
from the other particles and distorts the surrounding cage of colloidal particles as it 
moves through the liquid. This leads to a further decrease in the self-diffusion 
coefficient below that of D,. The mean square-displacement of the particle in  this 
time domain is termed the ‘long-time’ diffusion coefficient, D,. The natural time 
scale for structural evolution of colloidal systems is “’ID,,. The self-diffusion 
coefficients are computed from the mean square displacement, W(t) ,  which for a 
particular particle in the dispersion is, 

To improve statistical efficiency, the above formula is applied to  each particle in the 
simulation in turn. The average W(t)  is obtained at  the end of the simulation from 
the N individual W(t)s.  The rate of change W(t) gives the time dependent diffusion 
coefficient, D(r ) ,  

which in the limit of t + a gives the so-called long-time self-diffusion coefficient. We 
find, as did Cichocki and Hinsen’”z” that Eq. (24) converges more rapidly to the 
asymptotic limit than. W(t) / t ,  and therefore is a more reliable estimate of the long 
time self-diffusion coefficient as we are limited to a finite time duration for Wt) .  We 
also have Do = k,T/(, where ( = 3 r r ~ , ~ a  is the friction coefficient which provides a 
suitable quantity to normalise D, and D,,. 
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120 D. M .  HEYES AND P. J. MITCHELL 

The rheological behaviour of these systems is characterised in terms of the re- 
sponse of the stress tensor ?, to shear straining. We have, 

where u is the volume of the simulation cell. The Newtonian viscosity of a model 
M D  computer liquid can be obtained using the Green-Kubo expression which 
includes a time-correlation function, Cs( t ) ,  to be computed explicitly in the simula- 
tion and defined as 

where (...) indicates an average over time origins in equation (26). The Newtonian 
shear viscosity is given by, 

This method was first used by Levesque et a1." who applied it to Lennard-Jones 
liquids close to their triple point. The infinite frequency linear shear modulus is 
given by G, = C,(O). The corresponding expression for the simple Langevin BD 
system is 

where 9 ,  is the viscosity in the second Newtonian plateau. The present BD model 
only incorporates the thermodynamic interactions between the colloidal particles 
and ignores the many-body hydrodynamic solvent mediated forces. A measure of 
the contribution of many-body hydrodynamics to the total viscosity is given by the 
experimental value of the viscosity in the second Newtonian plateau, q,, which is 
entirely hydrodynamic in origin. The Equation (28) arises if we assume that the 
hydrodynamic contribution to the viscosity is equal to '1, at all shear rates, then the 
Green-Kubo formula in the present model gives the difference between the Newto- 
nian viscosity (the zero-shear-rate limit) and t i , .  In the present context we d o  not 
have to know '1, as we are only interested in  (qo - '1 ,) which compares directly with 
the viscosity, qO, that would otherwise be obtained doing the corresponding M D  
liquid simulation. 

The Non-equilibrium Brownian Dynamics, NEMD, technique computes the 
viscosity at a finite shear rate, j, using Lees-Edwards sliding periodic boundary 
conditions, 
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MODEL COLLOIDAL LIQUIDS 121 

In the limit of j +O, the Green-Kubo and NEBD values for the viscosity should be 
the same. We quote the shear rate here in a dimensionless reduced form called the 
Peclet number, defined here to be, Pe = z, j .  

The linear dynamic moduli can be obtained by Fourier transformation of 
Cv(t)35337. The storage modulus, G’ and the loss modulus, G” are given by, 

The dynamics viscosity is, q*(w) = q’(ai) - iq”(0)  where ~ ’ ( w )  = G”(w)/o and q”(w) = 
G’(w)/w. In the zero shear rate and zero frequency limit we have, q ‘ ( w + a ) =  
q ( j  + cc) = 0 in our model. 

5 RESULTS AND DISCUSSION 

A fundamental property of liquids is the self-diffusion coefficient of the component 
species. The short, D,, and long-time, D,-, self-diffusion coefficients of the suspended 
particles in near-hard sphere colloidal liquids have been determined experimen- 
 tall^^'.^^. We computed both D,  and D,, for a range of colloid particle interactions, 
the numerical values of which are listed in Table 1. We have used an r - ”  interaction 
as well as a hard-sphere interaction using an algorithm invented by Heyes and 
Melrose3’. The Ermak BD model does show noticeable disagreement with experi- 
ment in the equilibrium short and long-time diffusion coefficients, as seen in 

Table 1 Long-time self-diffusion coefficients D,JD, as a function of 
volume fraction and 17. H S  stands for simulations using a hard-sphere 
Brownian Dynamics algorithms. 

9 n = 6  12 18 36 72 H S  

0.705 ~ ~ ~ 0.880 ~ 

0.100 0.850 ~ 0.820 ~ ~ 0.816 
~ 0.799 0.1 15 ~ 

0.150 ~ ~ 0.749 
0.200 ~ ~ ~ 0.65 
0.250 0.650 ~ 0.564 0.581 
0.300 ~ 0.49 
0.350 ~ 0.402 
0.400 ~ ~ 0.29 1 ~ 0.30 
0.427 ~ ~ 0.279 0.229 ~ 

0.450 0.455 0.285 0.227 0.189 0.177 
0.463 ~ 

0.472 ~ 0.254 0.196 0.154 0.13 ~ 

0.490 0.431 ~ 0.1 16 
0.50 ~ 0.094 

~ ~ 

~ ~ 

~ 

~ ~ 

~ ~ 

~ 

- ~ ~ 0.171 

~ ~ 

~ ~ 
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122 D. M. HEYES AND P. J. MITCHELL 

Figure l(a). In the model we find, D,/D, = 1, which is independent of (b, whereas the 
experimental evidence is for a steep decrease in this ratio with increasing volume 
fraction. The simulated D J D ,  does decrease with increasing (b, but the ratio is 
always above the experimental curve. Interestingly, it is statistically the same as the 
experimental D$D, over the entire volume fraction range. We note that, in Figure l(a), 
the values of D for n = 36 and 72 are statistically indistinguishable from the 
hard-sphere data computed by Cichocki and Hinsen' 5 .29 .  This suggests that the 
inverse power potential for n > 36 is a reasonable representation for the hard-sphere 
interaction in this context. As the interaction becomes softer then the value of D 
increases at fixed (b. It could be argued that the effective hard-sphere volume 
fraction of these different n fluids would not be equivalent to the value based on D in 
the potential. To establish the influence of this, we have recomputed the volume 
fractions for each state point. An equivalent hard-sphere volume fraction was derived 
using the same value for the compressibility factor in the Carnahan-Starling equation 
of state2' as that computed in the inverse power fluid simulation. In  all cases the 
hard-sphere volume fraction was smaller than that based on the nominal D in the 
potential. The differences are quite small for (b in excess of 0.4, but are significant for 
41 < 0.1. The replotted Dvalues are given in Figure l(b), which reveals that even after 
this correction has been accounted for, the softer interactions still lead to higher 
dirusion coefficients, so this correction only has a minor effect. 

In Figure 2, we show the normalised stress correlation functions, C,(t), for several 
n = 36 N = 256 states as a function of volume fraction, (b. These functions decay 
rapidly at short times, and then more slowly at longer times as volume fraction 
increases which reflects the slowing down of structural relaxation with increasing 
volume fraction. The linear G' and G" for two of the volume fractions are presented 
in Figure 3(a) and Figure 3(b), respectively, for (b = 0.300, 0.400 and 0.472. (The 
Fourier transforms were performed using Filon's method, which is necessary for 
oa2/D, in excess of cu. 100031). G' is the elastic component of the response and tends 
to G, (given by Equation (22)) as wu2/D0+w. Using Equation (22) we have 
G, = 12.4,33.1 and 64.1 respectively. Figure 3 demostrates that these limits are 
reached in practice when wa2/D,-2000. The viscous component G reaches a 
maximum at w a 2 / D ,  - 800 before declining with further increase in frequency 
(Figure 3(b)). 

In Table 2 the computed shear viscosities are given as a function of shear rate and 
volume fraction. The Cox-Merz rule34 is an empirical observation that the linear 
response Iq*(w)l is the same as q($) and is found to work well for polymer solutions 
and melts. There is no theoretical justification for this 'rule' as the two processes of 
oscillation and shearing are quite different microscopically. The finite shear rate 
viscosity can be computed by BD on homogeneously shearing the contents of the 
cell of particles and also employing Lees-Edwards sliding image periodic boundary 
conditions. The q*(w) are computed numerically from the stress time correlation 
functions. Examples of Iq*(w)l and q*(fP) are shown in Figure4 for three volume 
fractions using an r -  " repulsive interaction. Although there is no strong evidence 
that real colloidal systems adhere to the Cox-Merz rule, these model systems do, in 
fact, show some degree of conformability in this respect if the dimensionless shear 
rate, j a 2 / D , , ,  is scaled by a factorf. In this contest it is worth recalling that the BD 
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Figure 1 The diffusion coefficients for the B D  model systems a s  H function of particle volume fraction 
using the inverse power potentials ( r  ") and H S  (hard-sphere) interaction. The  experimental da t a  for D, 
comes from [32] and  D, from 1333. Key: (a) we use the volume fractions based on  0 from the potential. 
( i c ,  I#J = Nu'/V) .  and (b) we use a thermodynamic equivalent hard-sphere volume fraction. 
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ri = 36 
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Figure 2 
the BD liquids. 

The shear stress time correlation functions for the equilibrium fluids using Equation (26) for 

model, however, predicts an infinite-frequency and infinite-shear rate viscosity which 
is zero, because both of these arise from fast solvent-mediated process between the 
colloidal particles, which are absent in the model. 

The BD algorithm results in an ordering of the particles at high Peclet number 
(Pe  = t a 2 / D o )  into a semi-crystalline phase, called the 'string phase', first discovered 
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0.300 0 

14 0.472 0 

c;" 0.400 + 

10 l 2  i 0 + +  

1 10 100 1000 
d,') / D(, 

Figure3 (a,b) The dynamic moduli for three volume fractions, $=0.300, 0.400 and 0.472 using 
N = 256. (a) Storage Modulus G' and (b) Loss modulus G". For (a) we also give. on the right of the figure, 
the value of G: using Equation (22). 

by Erpenbeck in hard-sphere molecular dynamics  simulation^^^. This is where the 
particles form into lines in the streaming (flow) direction. These lines or tubes of 
particles pack as a hexagonal close packed two dimensional lattice when viewed in 
cross-section. In order to minimise finite size effects, we have performed BD simula- 
tions on large systems of 4000 particles. Examples of these are given in Figures 5-7, 
showing particle assembly arrangements as shear rate is progressively increased. 
Figures 5(a)-(c) show particle projections on the three faces of the cell using a 
hard-sphere Brownian Dynamics44 but otherwise conforming to the Ermak scheme. 
The gradient-vorticity y z  plane shows the most structure. At Pe = 20 (Figure 5(a)) 
there is some evidence of a lamination of the particles into layers parallel to the 
flow-vorticity plane. At Pe = 40 (Figure 6(a)) the 'string' phase largely fills the simu- 
lation box, interestingly co-existing with a more amorphous region going through 
the middle of the box. This phenomenon has been observed in the past for equival- 
ent Molecular Dynamics systems3* and the 'nucleation' mechanism rationalised 
elsewhere*. As shear rate increases to Pe = 200 (Figure 7(a)) we see that most of this 
dislocation region has been annealed out. There have been a number of neu- 
tron39-41 and light scattering studies of near-hard sphere colloidal liquids under 
shear in recent years, on both charge and sterically stabilised systems. Although, 
there is some evidence for shear-induced 'crystalline' ordering at high shear rate,42, it 
would appear to be less pervasive and complete than that found by the shear- 
modified Ermak algorithm. 
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Table 2 Non-Newtonian viscosities obtained using Non-Equilibrium 
Brownian Dynamics. Key: Green-Kubo a )  N = 108, and separate runs 
b) N = 256 and c)  N = 256. The statistical certainty deteriorates 
dramatically as Pe-+ 0, where Pe = $/Do. 

0.0 a)  
0.0 b) 
0.0 c) 
0.004 
0.005 
0.01 
0.02 
0.04 
0.05 
0. I 
02 
0.3 
0.5 
0.4 
0.7 
1 
2.0 
2.5 
3.0 
5 
10 
15 
20 
25 
30 
35 
40 
50 
60 
70 
80 

0.58 
0.57 
0.50 
0.55663 

0.45 183 

0.48905 

0.50009 

- 

- 

- 

- 
- 

- 

0.48365 

0.40952 
0.34673 

- 

- 

- 

0.26797 
0.2197 
0.19675 
0.17518 
0.161 36 
0.15243 
0.13899 
0.12667 
0.1 1 I46 
0.916488-01 
0.784868-0 1 
0.65663E-01 

2.21 
2.05 
2.10 

- 

- 

1.9866 
- 
- 

- 

1.7940 
- 

- 

- 
- 

1.1747 
- 
- 

- 
- 

0.6408 1 
0.49595 
0.40871 
0.34420 
0.28020 
0.27 173 
0.23448 
0.13835 

- 

- 

- 
- 

- - 

- 6.64 
6.95 

- - 

6.5585 6.621 
6.9425 

4.1612 5.9197 

4.0 199 5.9271 
3.6520 5.5506 

- 4.5427 
3.0260 4.0176 

- 3.3725 

- 

- - 

2.2934 - 

2.0675 2.4203 
- 1.8408 

1.3574 - 

- 1.5284 
0.96624 - 

0.66173 0.73512 
0.43727 - 

0.33 1 14 0.35093 
0.16909 - 

0.13626 0.13188 
0.10872 - 
0.95433E-01 - 

- - 

- 
- - 

- - 

6 CONCLUSIONS 

In this work we have continued our Brownian Dynamics simulation studies of 
model colloidal liquids using the Ermak algorithm". In particular, we have made a 
critical assessment of the model by making comparisons with experimental data on 
near-hard sphere colloidal liquids. We have found that the model does surprisingly 
we!l, bearing in mind its simplicity and indicating the importance of excluded 
volume effects. However, in certain properties there are significant discrepancies 
with experiment, which can be attributed directly to the omission of many body- 
hydrodynamics in the model. 

Specifically, the first area of difference we would like to mention is in self-diffu- 
sion. The short-time self-diffusion coefficient in the model is, at all volume fractions, 
equal to the infinite dilution value of the experimental system. The corresponding 
experimental systems exhibit a dramatic decrease in the short-time self-diffusion 
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0.001 0.01 0.1 1 10 100 1000 10000100000 

fdjrr'/Dg ~ c L ~ / D ~  

Figure 4 (a-c) A comparison between the absolute complex linear viscosity, I q*(wja2/Do(, obtained from 
the Fourier transformation of C,(t) and the shear rate dependent viscosity, q ( f d 2 / D o ) ,  where the non- 
dimensional shear rate has been scaled by the factor f. The simulations use the r - "  interaction with 
n = 36. Key: (a) 4 = 0.300, N = 256 and f = 1.00 (bj 4 = 0.400, N = 256 and f = 3.00; (c) 4 = 0.472, 
N = 256 and f = 5.00. 

4 = 0.472 

Vorticity 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



MODEL COLLOIDAL LIQCJIDS 

j .a2/Dg = 20 

I29 

Flow 2 

Flow 3 

Figure 5 (a-c) A ‘snapshot’ structure of a state at a dimensionless shear rate of ya2/D, = 20. The hard- 
sphere Brownian Dynamics algorith was used with N = 4000. The model coordinates are drawn at 10% 
of their true diameter to facilitate recognition of the structures formed. The particle coordinates are 
projected onto the following planes: (a) the gradient-vorticity (yz) plane, so that the viewing direction is 
along the shear flow (x) axis; (b) the xz plane and (c) the x y  plane. 
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Flow 3 

Figure 6 (a-c) As for Figure 5, except ja2 /D,  = 40. 
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+a2/Do = 200 

Flow 

Figure 7 (a-c) As for Figure 6,  except @'/Do = 200. 
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coefficient with increasing volume fraction. The long-time self-diffusion coefficient 
does decrease with increasing solids volume fraction, but to a less extent than in 
experimental systems. The solvent mediated many-body hydrodynamics in real sys- 
tems slows down the rate of diffusion at very short times (compared with significant 
colloid particle displacement) because they act rapidly over a long-range ( -  r -  
decay). Phenomena manifest on this timescale are beyond the scope of the present 
BD model. We suspect, that the long-time diffusion coefficient in our model is 
representing the difference between experimental long-time and short-time self- 
diffusion coefficients ( i . ~ . ,  the resistance from the cage of colloidal particles on the 
mobility of a colloidal particle by virtue of the direct (‘electrostatic’) colloid-colloid 
interactions). 

The second area where we note a difference between BD simulation and experi- 
ment is in the high shear rate viscosity and the high frequency linear response 
dynamic viscosity. The Ermak BD model cannot compute the absolute viscosity of 
the colloidal liquid at high frequency and/or high oscillation frequency. In the 
former case because the solvent-mediated many-body hydrodynamic forces domi- 
nate at high shear rates as the particles are forced together by the imposed flow field 
(the hydrodynamic forces go as - ( r  ~ a)- I where a is the hardsphere diameter). In 
the case of linear response oscillatory shear, the structure of the liquid is essentially 
that of the equilibrium liquid, so the colloidal molecules do  not approach any closer 
on average. However, at high or ‘infinite’ frequency the timescales relevant to the 
suspension are those of the density fluctuations in the solvent and their interaction 
with the non-stationary framework of the colloidal particle assembly (just as for the 
short-time self-diffusion coefficient). Clearly, the simple BD model used here does 
not incorporate these effects, and consequently cannot obtain the ‘infinite’ limiting 
frequency dynamic rheology. Nevertheless, i t  has been found that both of these 
limiting cases can be corrected for, to a reasonable first approximation, by merely 
subtracting off the limiting values from the experimental data, suggesting that the 
hydrodynamic contributions are insensitive to frequency and shear rate. 

The third area of possible discrepancy we have identified is in the semi-crystalline 
structures formed at high shear rate in the BD model, which persist indefinitely but 
for which there is no strong experimental evidence for. 
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